

Line Integrals

- Calculate the arc length of the following curves:
 - $(2\cos(t), \sin(t), t), t \in [0, 2\pi].$
 - $\left(t+1, \frac{2\sqrt{2}}{3}t^{3/2}+7, \frac{1}{2}t^2\right), 1 \le t \le 2.$
 - $(t, t^2, t^3), 0 \le t \le 2.$
- Let $c(t) = (t, t\sin(t), t\cos(t))$ be a path describing a curve. Calculate the arc length that connects the points (0, 0, 0) and $(\pi, 0, -\pi)$.
- Show that the trajectory $c(t) = (\cos(t), \sin(t))$ is a flow line of the vector field $F(x, y) = -y\mathbf{i} + x\mathbf{j}$.
- Find the flow lines of the vector field F(x, y) = (x, y).
- Find the flow lines of the vector field F(x, y) = (a, a) with $a \in \mathbb{R} \setminus \{0\}$.
- Find the flow lines of the following vector field F(x, y, z) = (2x, y-1, z).
- Calculate the divergence and the curl of $F = x^2 y \mathbf{i} + z \mathbf{j} + xyz \mathbf{k}$.
- If $f, g : A \subseteq \mathbb{R}^3 \to \mathbb{R}$ and $F, G : B \subseteq \mathbb{R}^3 \to \mathbb{R}^3$, prove the following properties.
 - $\nabla(fg) = f\nabla(g) + g\nabla(f).$
 - div(F+G) = div(F) + div(G).
 - curl(F+G) = curl(F) + curl(G).
 - $div(fF) = fdiv(F) + \nabla(f)$.
- Let f(x, y, z) = y and c(t) = (0, 0, t) with $0 \le t \le 1$. Show that the path integral $\int_c f ds = 0$.
- Let $f(x, y, z) = x \cos(z)$ and $c = t\mathbf{i} + t^2 \mathbf{j}$, with $t \in [0, 1]$. Calculate the path integral $\int_c f ds$.
- Let $f(x, y, z) = \frac{x+y}{y+z}$ and $c = t\mathbf{i} + \frac{2}{3}t^{3/2}\mathbf{j} + t\mathbf{k}$, with $t \in [1, 2]$. Calculate the path integral $\int_{c} f ds$.

• Let $F(x, y) = x\mathbf{i} + y\mathbf{j}$ and consider the following two curves $c_1(t) = (t^2, t^2)$ with $-1 \le t \le 1$ and $c_2(t) = (2 - t, (2 - t)^2)$ with $1 \le t \le 3$. Calculate the following line integrals:

$$\int_{c_1} Fds, \ \int_{c_2} Fds$$

• Use the Green's Tehorem to evaluate the integral

$$\int_C y dx - x dy,$$

where C is the boundary of the square $[-1, 1] \times [-1, 1]$ using the opposite direction of the clock holes.

- Verify that in the following examples, the Green's Theorem is verified using D the circle with center (0,0) with radius R.
 - P(x, y) = 2y, Q(x, y) = x.
 - P(x, y) = x + y, Q(x, y) = y.
- Find the area bounded by an arc of the cycloid $x = a(\theta \sin(\theta))$, $y = a(1 \cos(\theta))$, where a > 0 and $\theta \in [0, 2\pi]$ using the Green's Theorem.