Universidad
 Europea

Line Integrals

- Calculate the arc length of the following curves:
- $(2 \cos (t), \sin (t), t), t \in[0,2 \pi]$.
- $\left(t+1, \frac{2 \sqrt{2}}{3} t^{3 / 2}+7, \frac{1}{2} t^{2}\right), 1 \leq t \leq 2$.
- $\left(t, t^{2}, t^{3}\right), 0 \leq t \leq 2$.
- Let $c(t)=(t, t \sin (t), t \cos (t))$ be a path describing a curve. Calculate the arc length that connects the points $(0,0,0)$ and $(\pi, 0,-\pi)$.
- Show that the trajectory $c(t)=(\cos (t), \sin (t))$ is a flow line of the vector field $F(x, y)=-y \mathbf{i}+x \mathbf{j}$.
- Find the flow lines of the vector field $F(x, y)=(x, y)$.
- Find the flow lines of the vector field $F(x, y)=(a, a)$ with $a \in \mathbb{R} \backslash\{0\}$.
- Find the flow lines of the following vector field $F(x, y, z)=(2 x, y-1, z)$.
- Calculate the divergence and the curl of $F=x^{2} y \mathbf{i}+z \mathbf{j}+x y z \mathbf{k}$.
- If $f, g: A \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $F, G: B \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, prove the following properties.
- $\nabla(f g)=f \nabla(g)+g \nabla(f)$.
- $\operatorname{div}(F+G)=\operatorname{div}(F)+\operatorname{div}(G)$.
- $\operatorname{curl}(F+G)=\operatorname{curl}(F)+\operatorname{curl}(G)$.
- $\operatorname{div}(f F)=f \operatorname{div}(F)+\nabla(f)$.
- Let $f(x, y, z)=y$ and $c(t)=(0,0, t)$ with $0 \leq t \leq 1$. Show that the path integral $\int_{c} f d s=0$.
- Let $f(x, y, z)=x \cos (z)$ and $c=t \mathbf{i}+t^{2} \mathbf{j}$, with $t \in[0,1]$. Calculate the path integral $\int_{c} f d s$.
- Let $f(x, y, z)=\frac{x+y}{y+z}$ and $c=t \mathbf{i}+\frac{2}{3} t^{3 / 2} \mathbf{j}+t \mathbf{k}$, with $t \in[1,2]$. Calculate the path integral $\int_{c} f d s$.
- Let $F(x, y)=x \mathbf{i}+y \mathbf{j}$ and consider the following two curves $c_{1}(t)=$ $\left(t^{2}, t^{2}\right)$ with $-1 \leq t \leq 1$ and $c_{2}(t)=\left(2-t,(2-t)^{2}\right)$ with $1 \leq t \leq 3$. Calculate the following line integrals:

$$
\int_{c_{1}} F d s, \int_{c_{2}} F d s
$$

- Use the Green's Tehorem to evaluate the integral

$$
\int_{C} y d x-x d y
$$

where C is the boundary of the square $[-1,1] \times[-1,1]$ using the opposite direction of the clock holes.

- Verify that in the following examples, the Green's Theorem is verified using D the circle with center $(0,0)$ with radius R.
- $P(x, y)=2 y, Q(x, y)=x$.
- $P(x, y)=x+y, Q(x, y)=y$.
- Find the area bounded by an arc of the cycloid $x=a(\theta-\sin (\theta))$, $y=a(1-\cos (\theta))$, where $a>0$ and $\theta \in[0,2 \pi]$ using the Green's Theorem.

